

### FACULTY OF ENGINEERING AND SCIENCE

# **EXAM**

Course code:

**MAS409** 

Course name:

Electric Motor Drives

Date:

22nd May 2019

Duration:

3 hours

Number of pages incl.

1

front page:

Resources allowed:

Approved pocket calculator. (No written material)



### Formulas and theory that may be useful:

### Production of Magnetic Field:



Flux density in air gap produced by a concentrated stator winding with  $N_s$  turns with current i:

$$B = \mu_0 \frac{N_s i}{2l_a}; \qquad \mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}$$
 (1)

#### Balanced Three Phase Circuits:



$$\bar{V}_{an} + \bar{V}_{bn} + \bar{V}_{cn} = 0 \tag{2}$$

$$\bar{I}_a + \bar{I}_b + \bar{I}_c = 0 \tag{3}$$

$$\bar{V}_{LL} = \sqrt{3}\bar{V}_{ph} \angle 30^{\circ} \tag{4}$$

#### Power Electronic Inverter

Bipolar switching:

$$v_{\text{cntrl}} = \left(\frac{1}{2} + \frac{\bar{v}_0}{2V_d}\right) \hat{V}_{tri} \tag{5}$$

if  $v_{\text{cntrl}} > v_{tri}$  then (A, B) = (1, 0) else (A, B) = (0, 1)

#### Induction motors:

Synchronous speed:  $n_{sync} = \frac{120 f_{se}}{p}$  [rpm]  $f_{se} = \text{stator frequency [Hz]}$  p = number of poles

$$\begin{aligned} \text{Slip: } s &= \frac{n_{sync} - n_m}{n_{sync}} \text{ [-]} \\ n_m &= \text{motor speed} \end{aligned}$$

The venin circuit for the stator side ( $R_1$ : stator resistance,  $X_1$ : reactance,  $X_M$ : mutual reactance):



$$\bar{V}_{TH} = \frac{jX_M}{R_1 + jX_1 + jX_M} \bar{V}_{ph}$$
 (6)

$$Z_{TH} = \frac{jX_M(R_1 + jX_1)}{R_1 + jX_1 + jX_M} = R_{TH} + jX_{TH} \quad (7)$$

Induced torque:

$$\tau_{ind} = \frac{3\frac{R_2}{s}V_{TH}^2}{\omega_{sync}\left[\left(R_{TH} + \frac{R_2}{s}\right)^2 + (X_{TH} + X_2)^2\right]}$$
(8)

Slip at pullout torque:

$$s_{\tau_{max}} = \frac{R_2}{\sqrt{R_{TH}^2 + (X_{TH} + X_2)^2}} \tag{9}$$

Maximum torque:

$$\tau_{max} = \frac{3V_{TH}^2}{2\omega_{sync} \left( R_{TH} + \sqrt{R_{TH}^2 + (X_{TH} + X_2)^2} \right)}$$
(10)



## Problem 1: Phasors and Space vectors [30%]



Figure 1: Motor construction a) "cut" perpendicular to the shaft-axis; b) cross-section seen from one side.

Fig. 1 shows the cross section of a stator with a rotor electrically open-circuited. This stator is of a three-phase, 2-pole ac machine with  $N_s=90$  turns for each phase winding, with air-gap length  $l_g=1.5$  [mm] and draws a total electrical power of 10 [kW] at a power factor of 0.85. The phase-a current is  $i_a(t)=30\cos(\omega t)$  [A], where  $\omega$  is the angular frequency in [rad/s]. The voltages are applied to the stator phases in a positive sequence resulting in counterclockwise rotation of the magnetic field.

- a) [10%] Calculate the rms value  $V_{LL}$  of the line to line voltage applied to this stator.
- b) [6.6%] Which one of the phasor diagrams shown in Fig. 2 is correct? Explain your answer.
- c) [6.7%] Calculate the net flux density  $\vec{B_{net}}$  produced by the stator at instant t such that  $\omega t = 120^{\circ}$ .
- d) [6.7%] Which one of the space vector diagrams shown in Fig. 3 is correct?



Figure 2: Phasor diagrams.





Figure 3: Space vector diagrams.

## Problem 2: Power Electronic Inverter [30%]

A switch-mode dc-dc converter shown in Fig. 4 with  $V_d=400$  V is controlled using a **bipolar** switching mode, comparing a control signal,  $v_{cntrl}$  with a triangular signal  $v_{tri}(t)$  plotted in Fig. 5. A DC motor is connected to the dc-dc converter and has the following parameters:  $R_a=0.30~\Omega$  and  $L_a=5~\mathrm{mH}$ .



Figure 4: Two poles dc-dc converter and DC motor

Figure 5: Triangular shaped carrier waveform

In a given steady state with constant motor speed, (the speed ripples are neglected), the back emf of the motor is  $E_a = 40$  V and the control signal is  $v_{cntrl} = 0.7$  V.

- a) [6.7%] Calculate the pole gain  $k_A$  for pole A of the dc-dc converter. Deduce the average voltage  $\overline{v_{aN}}$ .
- b) [6.6%] Calculate the average voltage  $\overline{v_{bN}}$  and deduce the average output voltage  $\overline{v_o} = \overline{v_{aN}} \overline{v_{bN}}$ .
- c) [3.3%] Calculate the average output current  $\bar{i}_o$ .
- d) [10%] Calculate the peak-peak ripple  $\Delta i_{0,ripple}$  of the output current.
- e) [3.4%] What is the frequency  $f_{out}$  of the output voltage?



## Problem 3: Modeling of IM machines [40%]

A 460-V, four-pole, 75-hp, 60-Hz Y-connected, three-phase induction motor develops its full-load induced torque at 3.5 percent slip when operating at 60 Hz and 460 V. The per-phase circuit model impedances of the motor are:

$$R_1 = 0.58 \ \Omega; \qquad R_2 = 0.07 \ \Omega; \qquad X_M = 18 \ \Omega; \ X_1 = 0.32 \ \Omega; \qquad X_2 = 0.386 \ \Omega;$$

Mechanical, core and stray losses may be neglected in this problem, i.e.  $\tau_{ind} = \tau_{load}$ .

- a) [10%] Calculate the full-load torque  $\tau_{load}$  and the rated motor velocity  $n_n$  in [rpm].
- b) [16.7%] Calculate the maximum torque  $\tau_{max}$  in Nm as well as the corresponding slip  $s_{\tau_{max}}$  and motor velocity  $n_{\tau_{max}}$  in rpm.
- c) [6.6%] Calculate the starting torque  $\tau_{start}$  in Nm and the corresponding slip  $s_{start}$ .
- d) [6.7%] With the help of Fig. 6, determine to which Nema class (A, C or D) this motor belongs and which design its rotor slot has (1, 2 or 3). Also link each rotor slot (1,2 or 3) with its corresponding Nema class (A, C or D). Explain your answer by considering low and high slip, rotor leakage reactance and variable rotor resistance.



Figure 6: Torque-Speed Curves for Different Rotor Designs